

Ar. Niyati Gupta is an architect with a master's degree in Urban Development and Management. She is presently pursuing Ph.D. research in disaster resilient healthcare infrastructure from the Department of Architecture, SPA Delhi. Her area of work is giving solutions on adaptation planning, healthcare architecture, climate resilient design.

Prof. Manoj Mathur is presently Professor of Architecture, Department of Architecture, SPA Delhi. Additionally, he is a Joint Hon. Secretary, IIA-Norther Chapter. He is also in the advisory Committee member for planning and construction of various central government institutions. Prior to his position, he has been practicing architecture at the Mathur and Kapre Associates. Besides involved with the execution of many award-winning designs across the country, over the years he has also continued to maintain a diverse portfolio of well-known projects that include Footwear Design Development Institute Noida, Flyover at AIIMS Intersection, Secretariat for North Eastern Council at Shillong, AIIMS Jodhpur, Sahitya Kala Parishad New Delhi, PVR Anupam Saket New Delhi, Abacus IT Parks Faridabad, Covered Bazaar New Tehri etc.

Prof. Dr. Anil Dewan, is presently the Head of the Department, Department of Architecture, SPA Delhi. He has been teaching hospital programming, planning, designing and construction and project management for healthcare facilities in India and Abroad for more 40 years now. He has been as adviser to many multilateral Institutions including World Bank, World Health Organization, Bureau of Indian Standards etc. He is presently the Vice President of Institution of Hospital Engineering, India and is also affiliated to the International Hospital Federation.

Resilience Indicators for Barrier Free Planning and Design of Hospital Buildings in Multi-Disaster Scenario

Theme: Design for all as a key to disaster resilience of hospitals

Ar. Niyati Gupta¹, Prof. Manoj Mathur², Prof. Dr. Anil Dewan³ ¹Research Scholar, Department of Architecture, School of Planning and Architecture, Delhi, India ^{2,3}Professor, Department of Architecture, School of Planning and Architecture, Delhi, India

Abstract

Purpose: The COVID-19 pandemic left the healthcare infrastructure upended given the patient surge. In India, hospital buildings were gravely impacted due to the compounding risks of the pandemic, floods and cyclones in 2021. This paper identifies the key resilience indicators featuring the barrier-free design and planning actions for the new construction of medium and large-scale hospital buildings with more than 100-bed capacity.

Methods: A modified Delphi technique is conducted in three rounds to identify the key indicators of resilience, wherein 57 indicators were identified in the first and second rounds of the survey. For the third round of the survey these indicators were grouped into three categories: a) master planning of hospitals campuses, b) Architectural design, c) building services and management. The corresponding indicators were ranked on a Likert scale of 1 to 9. **Results:** The top 6 indicators are: 'barrier-free access to emergency services, 'linear configuration of buildings', 'location and modularity of building services', 'signages for internal circulation', 'circulation of high dependency patients, 'standardised structural grid for modularity of built-form.

Conclusion: Assessment of the top indicators highlight the importance of 'flexible and modular design' and 'barrier-free access' as key components of the resilient design of hospital buildings. These outcomes will help the construction professionals in making resilient hospital buildings to accommodate the patient surge.

Key words: indicators, disaster resilience, barrier-free design, hospital planning, patient surge

Introduction

Many climatic disasters through the decade and recently COVID 19 grave challenges pandemic have posed on healthcare infrastructure. Structural disruption, interrupting building services and discontinuity in medical supply chains are commonly observed during any calamity (Forbes, 2021). Inadequacy in healthcare services could directly lead to the uncontrolled spread of contagious diseases and other health risks (Govindan, K., et.al., Most recently, Gotri hospital, a Covid-19 facility in 2020). Vadodara, Gujarat collapsed due to strong winds generated out of cyclonic effects of Tauktae. After examination, it was found that the glass pane-facade was not designed to take the load of 60km/hr. Interior fitouts including the false ceiling and loose furniture fitting were also damaged. Given the inadequacy of the infrastructure, about 50 patients were shifted to other facilities. Despite, the early warning systems, 98 hospitals in Gujarat were

ISSN: 2582-8304

affected due to power outages and building service instability (IE,2021). The increment in the global frequency of hydrological disasters have resulted in severe loss and damages to healthcare facilities Over 168 hospitals in Kerala suffered loss and damages due to the 2018, floods. The cost of loss and damages was calculated up to a total of approximately Rs. 120 crores with the division being: hospital buildings (Rs 80 crore), medical equipment (Rs 10 crore), hospital furniture (Rs 10 crore), and medical supplies (Rs 20 crore) (Sphere India, 2018).

Thereafter instances of disruption in healthcare many infrastructure and services, the concept of resilient healthcare infrastructure gained its cognizance in 2020 through various policy and budgetary initiatives by the Government of India (GoI). In the Union Budget, 2020, GoI offered to increase public spending towards healthcare infrastructure from 1.6% to 2.5% of the GDP by 2025. This investment would reflect in reduction of out-of-pocket expenditure from 65% to 35%. Despite the policy interventions by the government, the need for assessing the hospital functionality was established with the COVID 19 outbreak along with the risks posed by natural disasters (Krishnan, S. and Patnaik, I., 2020). This paper intents to understand the nuances of 'resilience framework' in planning and design of hospital campuses with more than 100-bed capacity. As an outcome, a comprehensive literature review of various indicators of hospital resilience is presented. The corresponding indicators are then modified through three step delphi technique to systematically represent the opinion of the stakeholders.

Resilience of Hospital Buildings

Concept of resilience has been explored through various fields of ecology, environment, psychology, health, sociology and

engineering (Fleming, J. and Ledogar, R.J., 2008). The concept of resilience engineering focuses on unifying all the building's functions and its components (Holling, C. S., 1973). In the context of tertiary care hospital buildings, resilience is defined as 'the hospital's ability to resist, absorb, and respond to the shock of disasters while maintaining its critical health care functions, and then recover to its original state or adapt to a new one' (Zhong, S. et.al., 2015). The components of resilience as derived through the definition are: a) resistance towards the extreme shocks, b) absorptive capacity of the system, c) response to aftermath of the disasters and d) adaptation of hospital functional capacity. These components of resilience have been looked from the perspective of management, with a focus on facility management and human resource management. Various hospital safety guidelines have revealed the structural and non-structural elements of the hospital buildings for risk mitigation. However, the role of design and planning of the hospital buildings in the resilience context have not been explored.

Hospital buildings represent one of the most complicated and critical emergency response resources (Shang, Q., et.al, 2020). A typical hospital facility depends on: a) access to hospitals, b) condition of the building services (mechanical, electrical and plumbing), and c) availability of healthcare workers (Fallah-Aliabadi, S., et.al., 2021). Malfunctioning of these elements will have a direct impact on the continuity of hospital functions and hence upended delivery of these services to the victims (Cristiano, S., et.al., 2021). Planning for unprecedented situations must estimate how patient surge can be capacitated within the hospital resources. These planning measures define the role for construction professionals, medical administration and disaster management administrators for manufacturing resilient hospital buildings. In order to foster resilience in hospital facilities, identifying potential indicators for design and planning is prudent.

Methods

This paper has adopted Delphi method to identify potential indicators for ensuring resilience of hospital buildings (Freitas, Â., et.al., 2018). The preliminary construct of these indicators is based on literature review of academic studies, standards, guidelines, norms and disaster assessment reports. These indicators are then modified through three stage Delphi method. This method allows the researchers to systematically weigh the opinion of the experts involved in planning, design and management of hospital buildings. The experts invited for this exercise were from the varied professions: medical officers, architects, planners, academicians, structural consultants and building service consultants. A total of 9 experts took part in the exercise after being versed with the aim and objectives of the survey. Transcript of records are processed by the author after the due written consent from the experts. In this paper, anonymity is maintained of the experts in accordance with the ethical approval by the institute. The methods for the identification of resilience indicators are explained in the following section.

Step-1

Table 1 indicates the preliminary construct of resilience attributes towards planning and design of hospital buildings with more than 100 bed capacity. These indicators are selected based on its frequency of occurrence in the corresponding literature.

Code	Category	Preliminary Indicators	Source(s)
		Accessibility to emergency	WHO, 2015; Jason
		and critical services	Schroer., et. al.,
			2021
		Flexible grid planning for	NDMA, 2016
		barrier free access	-
C1		Site planning according to	WHO, 2015
		topographic profile	-
	Site	Internal circulation and	FEMA,
	assessment	access ways	2008,2013,2020
	and planning	Adaptive planning of	PAHO, 2014;
		temporary camps to cater	WHO,2015
		patient surge	
C2		Elevated construction over	FEMA, 2013
		stilts	
		Alternate entry and exits	FEMA2013; NDMA,
		to critical services	2016
		Installation of ramps for	WHO, 2015, 2019
		barrier free movement and	
		access to medical spaces	
		Flexibility for reorganizing space for expanding	WHO, 2015; Anteby, R.,et.al.,
		waiting areas	Anteby, R.,et.al., 2020
		Support infrastructure for	
	Architectural	healthcare workers and	2016 2014, NDMA,
		attendees to victims	
	design	Signage for barrier free	Shuayb, I., 2020
		emergency movement and	, , , ,
		internal circulation	
			Toner, E.S.,
		accommodate additional	
		hospital staff (on duty)	
		Storage space and	WHO 2015; Zhong,
		reserves of medical	S., et.al., 2015
		stockpiles and logistics	
		Covered/Semi Covered	
		spaces for refugee area	2020
		setups	
С3		Modularity of HVAC	FEMA, 2013, 2020
		systems for enhancing air	
	Building	exchanges	Cimellana C. D.
	services and	Uninterrupted supply of	-
	management	medical gas and electrical	2021
	-	services in critical units	EEMA 2020
		Decentralized	FEMA, 2020
I		(Independent) planning of	

Table 3 Preliminary construct of resilience indicators for hospital buildings

Code	Category	Preliminary Indicators	Source(s)
		building services for the critical core	
		Location of medical services (Gas supply, lab equipment)	NDMA, 2016
		Planning for additional electrical load for expanded/special temporay facility	
		Robust Control, command and coordination systems for patient segregation and staff movement	

The above set of indicators are also inclusive of 'evaluation framework' of hospitals including the hospital safety index, 2015. These indicators are divided into three categories as represented in table 1. These indicators are also in coherence with the components of resilience: resist, absorb, respond and adapt. Thus, unanimity of the resilience concept through design and planning of hospitals are maintained. For the purpose of evaluation of these potential indicators, the experts were invited through an online training program on 'Disaster Resilient Healthcare Infrastructure' jointly organized by the School of Planning and Architecture, Delhi and National Institute of Disaster Management, New Delhi in April 2021. The invited experts had more than 20 years of work experience in construction and management of large- scale hospital facilities. A content analysis of the transcript of records of the first round is represented in table 2.

According to the content analysis, maximum importance was given to 'Barrier free access to emergency services and modularity of structural grid of hospital buildings' and 'Direct correlation of adaptation planning with the extended bed capacity to accommodate the surge'. The respective concerns are identified after calculating the frequency of occurrence of the key words/terms from the content analysis of the transcript of records from the first round of Delphi method.

	Frequency of occurrence				
Concerns (Challenges	Code	Overa	Medica	Non- Medica I	
Concerns/Challenges	Code	11			
Site review according to ecology, environment, climate, geology and					
environment, climate, geology and topography	C1	1%	0%	2%	
Site assessment according to urban		170	0%	270	
demographics to calculate the patient					
surge	C1	5%	5%	5%	
Implementation of Building		570	570	570	
Code/Safety guidelines	C2	6%	2%	8%	
Data assessment of disaster victims	CZ	070	2 70	070	
and loss of healthcare provisions is not					
accounted	C3	8%	10%	6%	
Cost effectiveness of decentralization	05	0 /0	10 /0	0 /0	
of building services	C3	10%	15%	8%	
Plug and play of essential building and	00	10 /0	13 /0	0 /0	
medical services for functioning of					
critical facilities in case of damage to					
hospital buildings	C1	10%	13%	7%	
Over/Underutilization of hospital					
resources in case of patient surge	C3	3%	5%	2%	
Lack of Healthcare Workers due to					
unavailability of personal and financial					
incentives	C1	13%	15%	12%	
Direct correlation of adaptation		_	-	-	
planning with the extended bed					
capacity to accommodate the surge	C2	13%	20%	9%	
Barrier Free access to emergency					
services and modularity of structural					
grid of hospital buildings	C1	14%	12%	16%	
Site monitoring for building services in					
case of providing extended facilities	C2	8%	4%	11%	
Flooding due to improper drainages at					
site level and due lack of maintenance					
of building services	C2	10%	0%	16%	

Table 4 Content analysis of round 1 of Delphi Method

1 Step-II and III

An online survey was designed to estimate the importance level of each indicator. This importance level was measured on a 9-point Likert scale.

1	2	3	4	5	6	7	8	9
Least				Moderately				Most
Important				Important				Important

The construct of resilience indicators was revised according to the outcome of the first round of Delphi survey. After tabulating the descriptive statistics from the second round of the survey, third round of survey is modified. After formulating the final set of resilience indicators for the third-round, final ranking is done by the same set of experts.

Indicators of resilience

Master Planning of Hospital Campuses

In India, IS 12433-2 (2001) is a code of practice for basic planning requirements of 100 bed hospitals, prescribed by the Bureau of Indian Standards (BIS), GoI. The functional requirement of hospitals for site development is derived from IS 12377.1988. Several standards, norms and guidelines have been provided by national and international organization for the purpose of design, planning and development. Based on these standards and identified academic literature, broad domains for site assessment are: site selection, site review and assessment, urban controls and concept planning. The indicators identified for these domains are derived as per frequency of their occurrence of the key terms in the identified literature. Table 1 presents comprehensive list of derived indicators for the respective

domains. These indicators collectively correspond to the master planning of hospital campuses in view of fostering resilience.

Table 5 Resilience indicators for Master Planning of Hospital Campuses

Domain	Code	Indicator	Rank
Site	S1	Access to site	1
selection	S2	Location of Hospitals Site as per geological conditions	9
	S 3	Urban demographic profile	5
	S4	Hazard and vulnerability profile	11
	S5	User identification and typology	13
	S6	Segregation of spaces as per type of medical services	15
Site review	S7	Superimposition of micro-zonation maps	4
and Assessment	S 8	Review of micro and macro climatic conditions	14
	S9	Review of site ecosystem and local environment	18
	S10	Soil Assessment	12
	S11	Topographic assessment	16
Urban	S12	Compliance to government regulations	19
controls	S13	Formulation and compliance to bye-laws	17
	S14	Guidelines for buildable areas	20
	S15	Vertical and horizontal segregation of departments	6
Concept	S16	Accessibility to emergency services	3
planning	S17	Efficient planning of ambulatory services	21
	S18	Parking and quick access to emergency areas	10
	S19	Building typology and configuration	2
	S20	Planning in view of topographic profile	22
	S21	Planning of site services	8
	S22	Spatial allocation for refugees/victims/patient surge	7
	S23	Temporary built expansion for adaptation of medical services	23

Architectural Design

Resilient design studies have been explored from the perspective of structural integrity and resistance to external shocks. Considering hospital resilience as system's functional capacity to withstand external pressures of disasters, a coherence between built form, structure and medical functions are set. In this section, potential indicators covering the architectural aspects have been identified. These indicators are categorized into 3 domains of architectural design: a) spatial planning and allocation of departments, b) built form and structure and c) Movement and circulation, as represented in table 4.

Table 6 Resilience	Indicators	for hospital	architecture
	zna catoro	ioi noopicai	arenteetare

Domain	Code	Indicator	Rank
Spatial	D1	Modularity of structural grid for inter-	7
planning		departmental connections	
and	D2	Spatial arrangement of building clusters to	15
allocation of		accommodate surge in case of disaster	
departments	D3	Accessibility of Helicopters/choppers	17
	D4	Planning of Support Infrastructure for attendants	8
Built-form and	D5	Interior finishes of walls, floors, doors and windows	12
Structure	D6	Typology and Configuration of building form	9
	D7	Elevated Plinth/ Stilt/Raised Construction	6
	D9	Alternate Entry and Exit at grade/Upper Levels	13
	D10	Planning flexibility (temporary facilities Flexibility of reorganizing Space in case of surge of patients)	3
	D11	Covered/Semi Covered spaces for Temporary set ups	14
	D12	Installation of ramps for circulation of victims	
	D13	Choice of material for ceiling and flooring of the hospitals to mitigate fire risk	11
	D14	Flexibility of Interior fit-outs	4
Movement and	D15	Horizontal and vertical movement of high dependency patients units (HDU/ICU/CCU)	10
Circulation	D16	Connectivity to hospital infra for managing such capacities	14

Domain	Code	Indicator	Rank
	D17	Protocol for signages and layout diagrams for HDU patient and staff movement in case of surge	5
	D18	Easy access and wayfinding to the utility core (staircases, ramps, lifts, toilets)	15
	D19	Barrier free access to emergency and critical services	2
	D20	Universal access to medical first aid	1

Building Services and Management

Hospital system functioning is highly dependent on uninterrupted functioning of mechanical, engineering and plumbing (MEP) services. Given the multiple inter-dependencies of these services this section identifies a set of indicators that are categorized into two major domains: a) design of building services and its operations and b) management and maintenance, as presented in table 5.

Domain	Code	Indicator	Rank
Design and Operations	B1	Type of HVAC service to the critical units,wards,OPDordIPD(Centralized/decentralized)	6
	B2	Location of source supply of Medical Services (medical Gas supply, lab equipment) to critical units on stilt floor to avoid flooding	2
	B 3	Modularity of HVAC system for varied air exchanges in the isolation facilities	5
	B4	Provision of uninterrupted supply of	1

 Table 7 Resilience indicators for design of building services and management

		electrical services for critical areas	
	B5	Fresh water supply in case of flooding	9
	B6	Installation of HEPA and UV filters for better	8
		indoor air quality	
	B7	Flexible design of services for future expansion in case of surge	6
Management and	B8	Maintenance of oxygen levels in critical units	4
Maintenance	B9	Water proofing of basements and avoiding	10
		drainage failure including pipe bursts	
	B10	Seismic support to the services cables for electrical supply	13
	B11	Services design and maintenance minimizing patient self-harm opportunities	3
	B12	Grading of power supply as per clinical risk grade	7
	B13	Appropriation of pressure differentials of	14
		HVAC systems	
	B14	Terminal equipment location	11

Conclusion

This paper presents a comprehensive set of resilience indicators for planning, design and management of hospitals to combat the aftermath of disasters. These indicators are directly correlated to the components of resilience and can be used for the purpose of evaluation of hospital functions. The ranking of these indicators perceptive importance of these indicators for the gives management to take priority actions. The results of this paper highlight the importance of 'site accessibility' and 'access to emergency areas' for the purpose of adaptation planning of hospital buildings. Considering the architectural and building services attributes of design, highest importance is given to **`locational** and modular planning of building services',

'configuration and typology of the built spaces' and 'barrier free access to the emergency areas'. Various codes of practices mandate the construction professionals to adhere to these indicators, however, these are often not given priority in planning and construction practices. A comprehensive list of planning and design considerations and emphasis given to the key indicators, thereby helps the professionals to incorporate resilient design practices for both retrofitting and new construction of hospital campuses.

Acknowledgement

The authors are thankful to the department of Architecture, SPA Delhi and National Institute of Disaster Management, Delhi for their collaboration towards this study. An extended gratitude towards the experts for diligently performing the exercise for the purpose of developing a set of resilience indicators for planning and design of the hospitals.

References

Forbes (2021) Building Resilient Supply Chains For Healthcare, Available

at: https://www.forbes.com/sites/zircongroup/2021/06/01/buil ding-resilient-supply-chains-for-

healthcare/?sh=26c598771dd6 (Accessed: July 2021).

Govindan, K., Mina, H. and Alavi, B., 2020. A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19). Transportation Research Part E: Logistics and Transportation Review, 138, p.101967.

Express Web Desk (2021) Cyclone Tauktae Highlights: Landfall process complete, power supply, mobile networks in Gujarat hit, Available

at: https://indianexpress.com/article/india/cyclone-tauktae-liveupdates-gujarat-kerala-diu-mumbai-rains-7316979/ (Accessed: July 2021).

Sphere India. (2018, September). Kerala Floods Joint DetailedNeedsAssessmentReport.

https://reliefweb.int/sites/reliefweb.int/files/resources/jdnakerala-report_1st-draft.pdf

Government of India (2020) Union budget 2020-21, India : Ministry of Fin

Krishnan, S. and Patnaik, I., 2020. Health and disaster risk management in India. Public Health and Disasters, pp.155-184.

Fleming, J. and Ledogar, R.J., 2008. Resilience, an evolving concept: A review of literature relevant to Aboriginal research. Pimatisiwin, 6(2), p.7.

Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.

Zhong, S., Clark, M., Hou, X.Y., Zang, Y. and FitzGerald, G., 2015. Development of key indicators of hospital resilience: a modified Delphi study. Journal of health services research & policy, 20(2), pp.74-82.

Shang, Q., Wang, T. and Li, J., 2020. A quantitative framework to evaluate the seismic resilience of hospital systems. Journal of Earthquake Engineering, pp.1-25.

Fallah-Aliabadi, S., Ostadtaghizadeh, A., Fatemi, F., Ardalan, A., Rezaei, E., Raadabadi, M. and Heydari, A., 2021. Hospital disaster resilience: development of an assessment tool using expert panel and fuzzy analytical network process. International Journal of Disaster Resilience in the Built Environment.

Cristiano, S., Ulgiati, S. and Gonella, F., 2021. Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa. Renewable and Sustainable Energy Reviews, 141, p.110765.

Freitas, Â., Santana, P., Oliveira, M.D., Almendra, R., e Costa, J.C.B. and e Costa, C.A.B., 2018. Indicators for evaluating European population health: a Delphi selection process. BMC Public Health, 18(1), pp.1-20.

World Health Organization, 2015. Hospital safety index: Guide for evaluators. World Health Organization.

Jason Schroer Erin Peavey Justin Roark Sarah Campbell Holton Jennie Evans (2021) The Pandemic Resilient Hospital: How Design Can Help Facilities Stay Operational and Safe, Available at: https://www.hksinc.com/how-we-think/research/the-

pandemic-resilient-hospital-how-design-can-help-facilities-stayoperational-and-safe/ (Accessed: July 2021).

Government of India (2016) Guidelines for Hospital Safety, India : National Disaster Management Authority.

FEMA. (n.d.). Columbus Regional Health- FLood of 2008.

FEMA. (2013). Reducing Flood Effects in Critical Facilities.

FEMA. (n.d.). Mitigation Best Practises, 2020

Shuayb, I., 2020. Barriers to Inclusive Design at University Built Environment. In Inclusive University Built Environments (pp. 161-181). Springer, Cham.

Toner, E.S., McGinty, M., Schoch-Spana, M., Rose, D.A., Watson, M., Echols, E. and Carbone, E.G., 2017. A community checklist for health sector resilience informed by Hurricane Sandy. Health security, 15(1), pp.53-69.

Anteby, R., Zager, Y., Barash, Y., Nadler, R., Cordoba, M., Klang, E., Klein, Y., Ram, E., Gutman, M. and Horesh, N., 2020. The impact of the coronavirus disease 2019 outbreak on the attendance of patients with surgical complaints at a tertiary hospital emergency department. Journal of Laparoendoscopic & Advanced Surgical Techniques, 30(9), pp.1001-1007.

Cimellaro, G.P., Arcidiacono, V. and Reinhorn, A.M., 2021. Disaster resilience assessment of building and transportation system. Journal of Earthquake Engineering, 25(4), pp.703-729.

Indian standard 12433-2 for 'basic requirements for hospital planning

part 2 up to 100 bedded hospitals'

Indian standard 12377.1988, 'classification and matrix for Various categories of hospitals'